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ABSTRACT

A multilevel iteration technique has been
developed for solving the Laplace equation of 2-
dimensional static field problems in arbitrary
layered structures for the RF circuit design.
Multigrid methods are well accepted in the fields
of applied mathematics, but are poorly
disseminated in numerical applications of
electro-magnetic fields. That’s why the authors
wish to give an introduction to this theory and
emphasize the convergence acceleration. The
method is verified with measurements of a
coplanar capacity line and is compared with
conventional solvers.

INTRODUCTION

Multigrid techniques are well known numerical
iteration methods to solve partial differential
equations (PDE) of any kind. They are well
established in solving problems in the fields of
applied mathematics like elasticity, deformation,
velocity flux, sonic flow, heat transfer,
convection diffusion, eigenvalue problems and
so on [1,2,3]. Although, the number and
complexity of applications and users is growing,
the acceptance to determine electro-magnetic
fields is very poor. First, this paper will give a
short insight into the method and will then
demonstrate the improved convergence rate of
the multigrid iteration in comparison to
conventional solvers. As an enhancement of the

method, a local grid refinement (LGR) will be
introduced and examined on a coplanar capacity
line.

MULTIGRID BASICS

The PDE which will be considered is the
Poisson’s equation (2nd order, elliptic PDE). The
2-dimensional formulation and its representation
in discreet form are

∆u x y f x y( , ) ( , )= , L u fh h h=  in Ω h , (1a,b)

where Ωh is any domain with the discretization
level h. Lh  is an operator in form of a sparse
matrix and u h  is the numerical solution of the
problem. Conventional iteration procedures to
solve (1b) are the Gauss-Seidel, the successive
overrelaxation or the Jacobi method. From the
literature it is known [2], that these relaxation
methods are capable to smoothen the high
frequency modes of the error very fast, but not
the low-frequency modes. They can be better
smoothened on coarser grids. The basic idea of a
multigrid scheme now is to smooth the error on a
fine grid, calculate the residual, transfer it to the
next coarser level where the solution of the error
is determined. The step from a fine to a coarse
level is called restriction. The prolongation is to
interpolate the error from the coarse level back
to the fine level and correct the original equation
by the error. After this coarse grid correction, a
post smoothing should be performed. For the 2-
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grid algorithm the steps can be summarized in
the following equations:

This can be extended to more levels of
refinement. Different procedures of level
interchanges are possible. Typical cycling
techniques are V-, W- or FMG-cycles. FMG
stands for full-multi grid. Here, the iteration
starts in the coarsest level. Schematic
presentations of the different cyclings are shown
in figure 1. In this paper, the goal is to determine
the static potential of arbitrary 2-dimensional

TEM-waveguides. The PDE, which has to be
solved with different parameters for the

multigrid method, is the Laplace equation, a
special form of the Poisson’s equation. One
difficulty is to find a set of grids with different
refinement. The solution is to draw one x- and
one y-grid line through each edge of the
structure under consideration [6]. The resulting
grid will be taken as the coarsest level of
refinement. In each finer level, a new grid line is
placed in the middle of two lines of the coarser

1. L u fh h h= discreet differential equation in level h
2. ~ ( , )u u fh h h= Spre pre-smoothing Spre; ~uh  is approximation of u h

3. r L u fh h h h= −~ residual equation; r h  is the residual
4. L e r2 2

2
h h

h
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Figure 1:  V-, W- and FMG-cycles
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Figure 2: Cross-view of the coplanar capacity waveguide
(W = 10 µm, S = 10 µm, CW = 65 µm, GW = 200 µm)
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level. Such a bisection will not be performed, if a
minimal discretization distance has been
reached. This factor for the x- and y-direction as
a function of the discretization can be
determined automatically by the software. The
result is an almost homogeneous grid in the
finest level [5]. Nevertheless, field-singularities
at the edges of conductors affect a slow down of
the convergence of the iteration. That’s why a
local refinement technique, described in [4] is
used to accelerate the iteration measured as the
asymptotic convergence rate (ACR). The ACR
is defined by lim ( )i i iR R→∞ +1 , where Ri is any

fixed residual norm of r h , measured after the ith
cycle. The principle is to perform a few
relaxation sweeps around the grid points with
singularities before the post-smoothing on the
regular grid is done. Some iteration techniques
are compared in the diagram of figure 3.

As expected, the Gauss-Seidel method has the
slowest convergence rate followed by the
successive overrelaxation (SOR with a
relaxation factor of 1.8). The standard multigrid
algorithm with V- or W-cycling already shows
an improved convergence. This can be enhanced
simply by adding a few relaxation steps on the
local refined mesh close to the edges of the
structure (see example of figure 2).

EXPERIMENTAL RESULTS

An application, that has been chosen to verify
the multigrid solver, is a coplanar waveguide
with a high capacitance to ground realized in the
MIM technology. This structure is suitable,
because the resulting equivalent circuit elements
can be compared with the values of a similar
parallel plate capacitor as well as with the data
of a measured circuit, fabricated on GaAs. The
cross view of the structure is shown in figure 2.
The element is very applicable in bias supply
circuits, since the large size oft the capacitance’s
area can completely vanish under the ground

stripes of the coplanar line. The multigrid solver
determines the equivalent line parameters from
the static fields to ′ =C 47 96. nF

m  and the
capacitance in units per length for the structure
filled with air instead of dielectric materials to

′ =C0 6 71. nF
m . This means, the equivalent

inductance ′ = ′ =L C0 0 0 0 166( ) .µ ε nH
m , if the

structure can be regarded as a TEM waveguide.
The differences to a parallel plate capacitor are
the scattered fields in the center and at the edges
of the coplanar line. Since the length and the
capacitor width (l=500µm and CW=65µm) of
the investigated structure are large, the
equivalent line parameters should be close to
those of the parallel plate capacitor. The

numbers are: ′ = =C
CW

d
r nF

m|| .
ε ε0 2

4548  and

′ =C0 622|| . nF
m .
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Figure 3:Convergence behavior of various
iteration methods

The coplanar capacity line has been fabricated
on GaAs at the Daimler Benz research center in
Germany (Ulm). The line length is 500µm.
Figure 4 shows a comparison of measured and
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simulated results up to 30 GHz. The agreement is
outstanding. With the combination of an
accurate modeling tool and very short simulation
times this software is utmost suitable for
computer aided circuit design tools.
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Figure 4:Measured and simulated S-parameters
of the coplanar capacity line

CONCLUSION

An iteration method for solving static field
problems has been presented, which is based on

multigrid / multilevel methods with local grid
refinements. It has been shown, that an
acceleration compared to the conventional
Gauss-Seidel method can be achieved. This
method with its automatic mesh generator is well
suited for the use in CAD tools.
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